пространство используется неэкономно - ορισμός. Τι είναι το пространство используется неэкономно
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι пространство используется неэкономно - ορισμός

ТОПОЛОГИЧЕСКОЕ ПРОСТРАНСТВО, В КОТОРОМ В КАЖДОЕ ОТКРЫТОЕ ПОКРЫТИЕ МОЖНО ВПИСАТЬ ЛОКАЛЬНО КОНЕЧНОЕ ОТКРЫТОЕ ПОКРЫТИЕ
Паракомпактность; Счётно паракомпактное пространство; Слабо паракомпактное пространство; Метакомпактное пространство; Точечно паракомпактное пространство; Сильно паракомпактное пространство; Гипокомпактное пространство; Субпаракомпактное пространство; Fσ-просеянное пространство

Унитарное пространство         
ЛИНЕЙНОЕ ПРОСТРАНСТВО НАД КОМПЛЕКСНЫМИ ЧИСЛАМИ СО СКАЛЯРНЫМ ПРОИЗВЕДЕНИЕМ
Эрмитово пространство; Комплексное евклидово пространство
Унитарное пространство — векторное пространство над полем комплексных чисел с положительно определённым эрмитовым скалярным произведением, комплексный аналог евклидова пространства.
Банахово пространство         
ПОЛНОЕ НОРМИРОВАННОЕ ВЕКТОРНОЕ ПРОСТРАНСТВО
Полное линейное пространство; Пространство Банаха; Банаховы пространства
Ба́нахово пространство — нормированное векторное пространство, полное по метрике, порождённой нормой. Основной объект изучения функционального анализа.
Банахово пространство         
ПОЛНОЕ НОРМИРОВАННОЕ ВЕКТОРНОЕ ПРОСТРАНСТВО
Полное линейное пространство; Пространство Банаха; Банаховы пространства
(по имени С. Банаха

полное нормированное Линейное пространство.

Βικιπαίδεια

Паракомпактное пространство

Паракомпактное пространство — топологическое пространство, в любое открытое покрытие которого можно вписать локально конечное открытое покрытие.

При этом: семейство U {\displaystyle {\mathcal {U}}} множеств, лежащих в топологическом пространстве X {\displaystyle X} , называется локально конечным в X {\displaystyle X} , если у каждой точки x X {\displaystyle x\in X} существует окрестность в X {\displaystyle X} , пересекающаяся лишь с конечным множеством элементов семейства U {\displaystyle {\mathcal {U}}} ; семейство U {\displaystyle {\mathcal {U}}} множеств вписано в семейство V {\displaystyle {\mathcal {V}}} множеств, если каждый элемент семейства U {\displaystyle {\mathcal {U}}} содержится в некотором элементе семейства V {\displaystyle {\mathcal {V}}} .)

Паракомпактом называется паракомпактное хаусдорфово пространство. Паракомпактность является одним из исходных требований в теории многообразий.

Каждое хаусдорфово паракомпактное пространство нормально. Это позволяет строить на паракомпактах разбиения единицы, подчиненные произвольному заданному открытому покрытию.

Τι είναι Унитарное пространство - ορισμός